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   Abstract 

 The study of meditation offers a perfect setting for the study 
of a large variety of states of consciousness. Here, we present 
a classifi cation paradigm that can be used for staging of indi-
vidual meditation sessions into a variety of predefi ned mental 
states. We have measured 64 channels of the electroencephalo-
gram (EEG) plus peripheral physiological measures in 49 par-
ticipants with varying experiences in meditation practice. The 
data recorded in a meditation session of seven meditative tasks 
were analyzed with respect to EEG power spectral density mea-
sures plus peripheral measures. A multiclass linear discriminant 
analysis classifi er was trained for classifi cation of data epochs 
of the seven standard tasks. The classifi cation results were veri-
fi ed using random partitions of the data. As an overall result, 
about 83 %  ( ± 7 % ) of the epochs could be correctly classifi ed 
to their originating task. The best classifi cation method was 
then applied to individual meditation sessions, which allowed 
for staging of meditation states similarly to the staging possi-
bility of sleep states. This study exemplarily demonstrates the 
possibility of developing an automatized staging tool that can 
be used for monitoring changes in the states of consciousness 
offl ine or online for training or therapeutic purpose.  

   Keywords:    classifi cation;   electroencephalography;   meditation; 
  states of consciousness.     

  Introduction 

 For most meditators, meditation is not a fi xed state of mind 
that they enter at the beginning and leave after fi nishing their 

practice. According to our physiological data and the reports 
given by meditators about their perceived states during medi-
tation, we clearly see that meditation can often be regarded 
as a process rather than a state. During meditation, a medita-
tor might wander between states of open mindfulness, con-
centration, feelings of joy, distraction, etc. A variety of forms 
of meditation have been discussed in the literature of psy-
chophysiological research  [6, 11] . One approach is to distin-
guish the mind-set of open monitoring and focused attention 
 [7, 11] . Several meditators focus their attention on their breath. 
However, there are also imaginative methods that make use 
of a mental focus (e.g., an image of the Buddha). There also 
exist exceptional meditation states comprising moments 
of contentless awareness, bliss, broader awareness, all-
encompassing compassion and love, awareness of being pres-
ent and being connected to other beings and/or a transcendent 
reality, as well as moments of special insight and knowledge. 
Several recently published, highly innovative papers, mainly 
originating from US-sponsored projects (by the Templeton 
Foundation, the Fetzer Institute, or the National Institutes of 
Health) have documented that such contemplative states are 
accompanied by a variety of discrete brain activation states 
without fi nding common and replicable patterns  [4, 9, 18, 19, 
21–24] . Recent studies from other groups support this fi nding 
 [1 – 3, 20] . However, there is a huge variability and inhomoge-
neity among many studies  [6] . Therefore, it is reasonable to 
study meditative states individually by aiming to fi nd meth-
ods for separation of states. 

 In our approach, we aim to discriminate the physiological 
brain states of various meditation-related tasks that encapsu-
late certain states of consciousness. Additionally, these dis-
crimination algorithms can be applied to a free meditation 
session leading to the possibility of staging of meditative 
states. An online application of the proposed approach allows 
for a real-time staging of a meditation process.  

  Materials and methods 

  Participants 

 In this study, data from 49 meditation practitioners with vary-
ing meditation experiences were used for offl ine classifi cation 
analysis. Participants were aged between 22 and 65 years (mean 
45 years, 16 females, 33 males). Thirty-one of 49 were highly 
experienced spiritual practitioners with  > 1000 h of meditation 
practice and 11 of 49 had  < 40 h, which we call low-experienced 
meditators. The meditators were inhomogeneously associ-
ated with different kinds of spiritual traditions and cultural 
background, such as Zen-Buddhism, Qi-Gong, Sahaja Yoga, 
Western contemplative methods, and spiritist or mediumistic 
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practitioners. Some of them practiced spiritual healing and 
Shamanism. The measurements were carried out at various 
locations, predominantly meditation centers or in participants ’  
homes. Most of the Buddhist practitioners were Japanese or 
Chinese and were measured in Japan. Despite the heterogeneity 
of traditions, all meditators were able to carry out the meditative 
and non-meditative tasks reliably according to their reports. 

 All meditators participated voluntarily and gave their 
informed consent. The study was approved by the school 
Ethics Committee of the University of Northampton, UK, and 
the Ethics Committee of the University Clinic Freiburg i. Br., 
Germany.  

  Measurement procedure 

 All physiological data were recorded with a 72-channel 
QuickAmp amplifi er system (BrainProducts GmbH, Munich, 
Germany). Electroencephalogram (EEG) was measured using 
a 64-channel ANT Waveguard electrode cap (ANT B.V., 
Enschede, The Netherlands) with active shielding and Ag/AgCl 
electrodes, which were arranged according to the international 
10/10 system. The system was grounded at the participants ’  
shoulder. Data were recorded with a common average refer-
ence and fi ltered in a range from direct current (DC) to 70 Hz at 
a sampling rate of 250 Hz and 22-bit resolution. For correction 
of eye movement and blink artifacts, the vertical electroocu-
logram (EOG) was additionally recorded. Respiration was 
measured with a respiration belt and the skin conductance was 
derived from the second and third fi nger of the non-dominant 
hand. Additionally, for measuring the heart rate variability, the 
electrocardiogram was captured with two electrodes. 

 The measurements started with an initial 15 min baseline 
session in which participants sat in their meditation posture 
for 5 min with eyes open, 5 min with eyes closed, and spent 
5 min on reading a text from a book or a computer screen. 
After a short break, a meditation session of 20 – 30 min dura-
tion was carried out in which they were asked to meditate 
in their own usual way, which differed across subjects. This 
individual meditation session was assumed to consist of a 
variety of mental states. It served as an experimental session 
to exemplify the staging approach reported here. Finally, 10 
min of guided meditation was carried out in which the par-
ticipant was asked to perform four different but well-defi ned 
meditative tasks, each of them for 2 min duration. These 
tasks consisted of 1) resting in a meditative state of presence; 
2) resting in a state of thoughtless emptiness; 3) concentration 
on the  “ third eye, ”  which is the spot on the forehead between 
the eyebrows; and 4) concentration on the body axis. Thus, in 
total, seven epochs with different instructions were available 
from all meditators (Table  1  ). In the following classifi cation 
analysis, those seven standardized task conditions served as 
the database as they were available for all 49 participants. 
One entire session lasted between 2.5h and 3 h.  

  Data processing and feature selection 

 The whole data analysis was done using Matlab version 7.3 
(Mathworks, Inc., Natick, MA, USA). 

 1)   Preprocessing: 
  After detrending the DC-recorded EEG data sets, all EEG 
channels were corrected for eye movements using a linear 
correction algorithm. This algorithm detected eye blinks 
and movement events and used those periods for deter-
mining a correction factor for each channel. The EOG was 
multiplied with this factor and then subtracted from the 
EEG. It was found to work suffi ciently in normal non-
moving EEG and can also be applied in a real-time set-
ting as we intend to do in the future. All EEG data were 
corrected for high-amplitude artifacts by limiting all EEG 
amplitudes to 10 times of their standard deviation. Further, 
a 1-Hz high-pass fi lter was applied. 

 2)   Autoadaptive calculation of individual frequency bands: 
  It has been shown in the literature  [10]  that the selection of 
standard frequency bands does not result in an optimal inde-
pendency of the bands. Especially the alpha rhythm showed 
a clear variation with age  [16] . Because the rhythms slow 
down with age, it would make sense to defi ne the frequency 
band limits individually for each subject. 

 In our approach, an algorithm was developed that allowed 
for determining the individual alpha peak frequency (IAF) 
using the resting EEG data stream. Data from the eyes-closed 
condition were used for calculation of the IAF. The algorithm 
consisted of the following steps:   

Searching for the 1 min epoch in the eyes-closed data with a) 
the highest standard alpha band activity (8 – 12 Hz) in pa-
rietal-occipital areas. This epoch served as analysis epoch 
for the IAF.
    Extracting this epoch from unfi ltered preprocessed raw b) 
data (corrected for EOG artifacts).    
Calculation of a high-resolution fast Fourier transform c) 
(FFT) over the 1 min epoch in the full frequency range 
from 0 to 70 Hz.    
Averaging of all spectra from parietal and occipital d) 
regions.    
Determining the individual expected age-dependent peak e) 
frequency as IAFexp = 11.95-age×0.053. By this formula, 
the expected alpha frequency for a 20-year-old subject 
would be 10.89 Hz while it decreases to 8.24 Hz in a 
70-year-old person. This linear decrease of the alpha peak 
frequency with age has been described by K ö pruner et al. 
 [15, 16] . According to Aftanas and Golosheikine  [2] , the 
actual IAF can vary, so that the IAF was determined by 
searching for a peak in the high-resolution spectra in a 
range of IAFexp  ± 2 Hz.    

 Using this algorithm on 49 subjects, a valid peak frequency 
could be found in 47; in other words, in two of 49 subjects, the 

 Table 1      The seven standard conditions plus one individual 
meditation session.  

Eyes open Presence
Eyes closed Emptiness
Reading Third eye
Meditation Body axis
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peak frequency was  > 2 Hz higher than estimated. However, 
those subjects also showed a very atypical spectrum that 
made the alpha peak hard to fi nd by visual inspection of the 
spectrum. Here, the age typical frequency was chosen. Using 
the IAF, the frequency bands were determined as follows:   

Delta: 1.5 Hz–0.6×IAF
    Theta: 0.6×IAF–0.8×IAF
    Alpha: 0.8×IAF–1.2×IAF
    Beta1: 12.5 Hz–16 Hz    
Beta2: 16.5 Hz–24 Hz    
Gamma1: 24.5 Hz–47 Hz
    Gamma2: 54 Hz–70 Hz    

 3)   Power spectral density: 
  A power spectrum time series was calculated using FFT, 
which was applied to the windowed EEG time series that 
was convolved with a Nutall-window and shifted in steps 
of 0.5 s. A window size of 2 s was chosen for calculation 
of the FFT frequency coeffi cients up to 10 Hz while all 
higher frequencies were calculated using a 1 s window. The 
Fourier amplitudes of the 1-s windows were multiplied by 
the square root of 2 to make them comparable with the 
2 s windowed frequency coeffi cients. Their squared value 
resulted in power spectral densities (PSDs), which then 
were log-transformed for statistical distributional reasons. 
Seven frequency bands as defi ned above were calculated 
by merging the corresponding FFT coeffi cients. 

 4)   Lateralization: 
  According to Davidson et al.  [8] , the hemispheric asymme-
try additionally may be a parameter of interest. Therefore, 
the PSD between left and right hemispheric areas as 
shown in Figure  1   were calculated and used as parameters 
for later classifi cation. Eight interhemispheric areas were 
defi ned. The mean power of a right area was subtracted 
from the corresponding left area band power value. For 
further statistical analysis, the lateralization was expressed 
in a relative change by normalizing the difference to the 
mean power in both areas. 

 The possible features for classifi cation comprised the PSD 
sets of seven spectral bands, the lateralized band power of 
seven bands, heart rate, vertical EOG, phasic skin conductance, 
and respiration amplitudes. All measures were adjusted to an 
analysis sampling rate of 2 per second as given by the FFT.  

  Classifi cation method 

 The fi rst aim of this classifi cation analysis was to test the sep-
arability of the seven task conditions. In principle, to apply 
supervised learning algorithms to the problem of the analysis 
of states of consciousness, specifi c classes are required origi-
nating from time intervals in which a meditator was asked to 
fulfi ll a well-defi ned meditation task. These intervals should 
be long enough to be separable into a number of epochs that 
then can serve as trials for the state classifi cation. Such inter-
vals with defi ned tasks were available for all meditators of 
this study according to the experimental design as mentioned 
above. This study contains one long enough interval of each 

of the eight conditions. Here, each 2-s-long sampling interval 
formed one epoch. 

 We focused on the question: How reliable can a classifi ca-
tion algorithm reassociate an arbitrary short epoch of the EEG 
to its originating task condition ?  This will provide a measure 
for the separability of task conditions. To answer this ques-
tion, the following procedure was used for a classifi cation:   

Extraction of task sequences. The PSD of all seven stan-a) 
dard task conditions were extracted from the three runs and 
concatenated to one data series. This resulted in a three-
dimensional data series of size [64 channels, n samples, 7 
frequency bands] and a sampling rate of 2 per second. A 
task vector of size n was used to specify the task condition 
(1...7) for each sample.
    Selection of cross-validation data. A random selection of b) 
20 %  of all samples was extracted from the data series. The 
remaining 80 %  were used as training data for training of 
the multiclass linear discriminant analysis (LDA) classi-
fi er that was used for classifi cation of the remaining 20 % .    
Principal component analysis (PCA). The original di-c) 
mension of one sample of band power data was 448 
(64 channels × 7 bands). To avoid overfi tting, about 10 
times more samples are typically suggested for the training 
data set compared to the dimension of each sample vector. 
As a consequence, one would need about 4500 samples 
of training data that would require a time epoch of about 
37 min for each task. Luckily, a high interdependency in 
the signal variation between the different electrodes is 
common in a 64-channel recording. Therefore, a reason-
able way to reduce the channel dimension was to apply 
a PCA to the training data set before classifi cation. PCA 
coeffi cients were calculated for each band separately. 
The PCA transformed the 64-dimensional data vector 
into 64 principal components that then were sorted ac-
cording to the variance explained by each coeffi cient. 

 Figure 1    The reduction scheme into eight lateralized areas is illus-
trated. The hemispheric lateralization values are defi ned by subtract-
ing the averaged right area from the corresponding left.    
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Often, already the fi rst few coeffi cients explain  > 95 %  of 
the signal variance. Sometimes, the fi rst component al-
ready explains  > 80 %  of the signal variance. As a good 
trade-off between information content and number of 
PCA, we chose three coeffi cients. This results in a training 
vector dimension of 21 (3 coeffi cients  × 7 bands) meaning 
that  < 2 min of training data will be suffi cient. The test data 
set (a 20 %  selection) was transformed into the same PCA 
coeffi cients by applying the transformation matrix to those 
data as well.  
  Classifi cation. For classifi cation a multiclass Fisher ’ s LDA d) 
 [12, 17]  was applied to the sample vectors. Each sample of 
the test data was classifi ed into the best-fi tting task condi-
tion out of the seven conditions. The best fi t was defi ned 
as the smallest distance of one sample data vector to the 
mean training vector of a certain task condition. Several 
combinations of EEG measures were used to explore the 
contribution of different measures. For this, a variety of 
different classifi cation methods were formed, which were 
compared in the following section.    
Twenty-fold 20 cross-validation. Steps 2–4 were repeated 20 e) 
times in a loop, i.e., a 20-fold 20 cross-validation process. 
The classifi cation results of all 20 repetitions were averaged, 
resulting in a mean classifi cation accuracy for each task 
condition separately. For an overall classifi cation result, the 
accuracies from all seven conditions were averaged.      

  Results of classifi cation 

 In the process of fi nding an appropriate method for staging a 
meditation session, several sets of measures included in the 
data vector for classifi cation were studied. 

  Impact of individual measures 

 The fi rst goal was to obtain an insight into the amount of 
information that is contained in the feature variables that were 
extracted from the EEG and also the peripheral measures with 
respect to the reliability for associating a sample unit to its 
originating task condition. 

 As described above, it is necessary to reduce the number 
of dimensions to avoid overfi tting effects. Such reduction 
reduces the information content and thus also the classifi ca-
tion accuracy as illustrated in Table  2  . Here, different numbers 
of the most important PCA coeffi cients were used for classi-
fi cation of each frequency band separately. The classifi cation 
results of all bands, all task conditions, and all participants 
were averaged. This results in an average accuracy of 62 %  
when using all 64 coeffi cients, i.e., the number of channels. 
Using only 21 coeffi cients, which was the limit for the pres-
ent amount of training data, this accuracy decreases to 57 % , 
which is not much less. The chance expectancy for classify-
ing a sample to its originating class would be 1/7 = 14.3 %  only. 
Using less coeffi cients further reduced the information con-
tent, resulting in a 40 %  accuracy with three PCA coeffi cients 
only, which is still signifi cantly higher than chance. 

 Second, the classifi cation accuracies obtained with each 
feature variable were compared with each other. This pro-
vided an idea of the relevance or contribution of each vari-
able to the classifi cation result. Therefore, each feature was 
classifi ed separately according to the procedure described in 
 “ Classifi cation method. ”  The PCA reduced the 64-channel 
PSD features to a four-coeffi cient feature vector in order to be 
comparable to the four-dimensional PSD lateralization val-
ues (four localizations, namely frontal, central, temporal, and 
parietal). 

 The resulting average classifi cation accuracies for each fre-
quency band are shown in Figure  2  . The lowest impact on the 
classifi cation accuracy was given by the low-frequency later-
alization measures (delta, theta, and alpha bands). The highest 
predictability was provided by the gamma bands, especially 
the lateralization of the gamma2 band. This means that just 
by looking at the high gamma band power or lateralization 
amplitudes, one could associate an arbitrary sample of the 
whole data set to its originating task condition with a reliabil-
ity of 60 % . The standard deviation across subjects is around 
0.1. The peripheral measures only offer one coeffi cient per 
measure of EOG, heart rate, skin conductance, and respira-
tion. The lowest impact was given by the phasic skin conduc-
tance (average accuracy of 23 % ) followed by the EOG (27 % ) 
and respiration (28 % ). The heart rate with 37 %  provided the 
two most predictive peripheral measures.  

  Empirical search for improved classifi cation modes 

  Mode 1: Classifi cation of all-band PSD    According to the 
algorithm proposed in  “ Classifi cation method, ”  the 21 PCA 
coeffi cients were composed of three coeffi cients per band. 
The resulting total accuracy after averaging all participants 
was 66 %  ( ± 9 % ). This is more than the average accuracy of 
57 %  when using single bands only. 

  Mode 2: Classifi cation of all-band PSD plus lateraliza-
tion data    To increase performance by adding the later-
alization features to the PSD data, a feature vector of 3×7 
PSD plus 4×7 lateralized PSD = 49 coeffi cients was created. 
This vector was reduced to 21 coeffi cients by a second 
PCA. Classifi cation resulted in an average accuracy of 76 %  
( ± 8 % ), which was signifi cantly higher than mode 1 using 
PSD band data only. 

  Mode 3: Classifi cation of all-band PSD, lateralization 
plus peripheral data    Mode 3 included as many measures 
as possible by using three coeffi cients of the 64-channel PSD 
of each of the seven frequency bands, four lateralized area 
PSD data of each of the seven frequency bands plus four 

 Table 2      Classifi cation result from 64 channels using different 
numbers of PCA coeffi cients.  

PCA coeffi cients 2 3 4 10 21 64
Average accuracy 0.37 0.40 0.43 0.51 0.57 0.62

   The classifi cation results of all participants and all frequency bands 
were averaged.   
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peripheral data. This resulted in a total of 53 coeffi cients 
per sample to be classifi ed. This set was also reduced to the 
most meaningful 21 coeffi cients using a second PCA. This 
allowed for the comparability of the performance with previ-
ous modes. 

 Although this method included information of all fre-
quency bands of the PSD and the lateralization PSD data, 
plus the peripheral data, the results decreased to 67 % , i.e., 
roughly the same performance as mode 1. This shows that 
the inclusion of more measures does not necessarily lead to 
higher classifi cation rates. 

  Mode 4: Single-band classifi cation of PSD    The previous 
results forced us to pay more attention to individual bands. 
The question of whether information of single bands in 
respect of separation of classes exceeds the use of all bands 
is answered in this mode. Here, the data vectors consisted of 
21 PCA coeffi cients of the PSD from one of the seven fre-
quency bands similarly to Table  2 . While the use of 4 coef-
fi cients only resulted in a maximum of about 60 %  correct 
classifi cation rate, the use of 21 coeffi cients could improve 
the performance in all frequency bands, resulting in an aver-
age accuracy of 79 %  in the high gamma band. Thus, both 
low and high gamma bands with 78 %  and 79 %  offer higher 
classifi cation rates than using all bands and features as done 
in modes 1–3. 

  Mode 5 (selection 1): gamma band PSD and peripheral 
data    The previous results asked for a more thorough selec-
tion of parameters to be used as classifi er input. Adding the 
four peripheral data coeffi cients to the highest-ranking 17 
coeffi cients high gamma PSD for obtaining a vector with 21 
coeffi cients resulted in a further increase of the PSD to 84 %  
at average. 

  Mode 6 (selection 2): gamma band PSD and peripheral 
data    The gamma band lateralization offered similar high-
accuracy values than the gamma band PSD. Therefore, it was 
attempted in mode 6 to add the gamma1 band of the lateral-
ized data to the set. This required a reduction of the gamma2 
PSD to 13 coeffi cients in order to obtain 21 coeffi cients in 

total. However, the result of 83 %  could not exceed the previ-
ous mode. 

  Mode 7 (selection 3): selection of PSD and peripheral 
data    After studying the results in Figure  2  by looking for the 
highest-ranking parameters in terms of accuracy rates and also 
considering the possibly most independent parameters, we 
came out with a subset of parameters that seemed appropriate 
for a suffi ciently improved classifi cation that can serve as a 
method for the further staging example. This set included the 
alpha, beta1 (SMR), beta2, and gamma2 band PSD values; the 
beta2 and gamma2 lateralization data; and the four peripheral 
measures. Again, three PCA coeffi cients were used for each 
band. The gamma 1 band seemed to be highly correlated to the 
gamma2 band and thus was not included. The delta and theta 
bands do not seem to classify very well and therefore were 
excluded as well. The same was true for the skin conductance 
and respiration measures. Altogether, 24 coeffi cients formed 
one sample vector, which was reduced to 21 coeffi cients for 
comparability with previous modes. Over all tasks, a mean 
classifi cation accuracy of 83 %  ( ± 7 % ) could be achieved with 
this method. As this mode offered the lowest standard devia-
tion across participants, it can be regarded as the most robust 
one.  

  Summary and comparison of different classifi cation 

modes 

 Table  3   summarizes the results of the various classifi cation 
modes reported in the previous paragraph. The comparison 
shows that the amount of parameters included for classifi -
cation is not the essential factor for obtaining an optimized 
classifi cation performance. It is rather the wise selection 
of relevant measures that contribute to the identifi cation of 
the different states. Such sets of measures have been found 
in modes 5–7, which succeeded the other modes. Figure  3   
displays the classifi cation accuracy of the highest ranking 
mode 5 for each subject separately but averaged over all task 
conditions. In contrast, Figure  4   illustrates the performance 
of mode 7 for each task condition but averaged over all par-
ticipants. As mode 7 offers one of the highest classifi cation 
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 Figure 2    Comparison in information content of band power and band power lateralization. Each bar was calculated using four coeffi cients for 
classifi cation. Results from all participants were averaged. The standard deviation between subjects was approximately 0.10–0.12.    
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 Table 3      Overview of classifi cation modes and results.  

Classifi cation mode Classifi ed measures No. of coeffi cients Total accuracy (SD) (all 
participants, all tasks)

1 PSD (all 7 bands) 3×7 =  21 0.66 (0.09)
2 PSD and lat. PSD (all 7 bands) 3×7 + 4×7 =  49  →   PCA  → 21 0.76 (0.08)
3 PSD and lat. PSD (all 7 bands) and all peripheral 3×7 + 4×7 + 4 = 53   →  PCA  → 21 0.67 (0.09)
4 PSD (Delta) 21 0.38 (0.06)
4 PSD (Theta) 21 0.37 (0.06)
4 PSD (Alpha) 21 0.47 (0.08)
4 PSD (Beta1) 21 0.44 (0.09)
4 PSD (Beta2) 21 0.60 (0.10)
4 PSD (Gamma1) 21 0.78 (0.09)
4 PSD (Gamma2) 21 0.79 (0.07)
5 (Selection 1) PSD (G2) and all peripheral 17 + 4 =  21 0.84 (0.08)
6 (Selection 2) PSD (G2), lateralized PSD (G1) and all peripheral 13 + 4 + 4 =  21 0.83 (0.08)
7 (Selection 3) PSD (A, B1, B2, G2), lateralized PSD (B2, G2), 3×4 + 4×2 + 4 = 24   →  2 nd  

PCA  → 21 
 0.83  (0.07)

and all peripheral

   All PCA transformations on 64-channel PSD data resulted in a reduction to three coeffi cients; band names are D, Delta; T, Theta; A, Alpha; B1, 
Beta1 = SMR; B2, Beta2; G1, Gamma1; G2, Gamma2; S, signal shifts; 49 participants were averaged; seven standard task conditions were averaged.   

accuracies and the lowest standard deviation, this mode offers 
the most robust and reliable set of variables and we decided to 
use it for the following part of our studies, i.e., the demonstra-
tion of a staging process.   

  Continuous data stream classifi cation 

  Classifi cation within a meditation session 

 For a continuous data stream classifi cation, it is necessary 
to have training data available defi ning a number of spe-
cifi c states of consciousness. In our study, the meditation 
sessions have been classifi ed into the seven standardized 
tasks. That means that for classifi cation of the freestyle 
meditation session, seven standard task conditions (i.e., 
the initial three baseline recording tasks and the four 
guided meditation tasks) served as training data sets for 

the multiclass LDA classifi er. The classifi cation process 
was carried out on the meditation data sample by sample, 
determining the distance of the sample data vector to each 
of the seven classes. The class with the nearest distance 
was defi ned as the classifi cation result. Figure  5   shows the 
distribution of the amount of data samples from the medi-
tation session that has been classifi ed to one of the seven 
remaining tasks for each participant separately. There is a 
huge variability between subjects, but for almost all sub-
jects one can see that their EEG during meditation was 
from time to time similar to different tasks.  

  Staging of states of consciousness 

 This method can be used for continuous data stream classi-
fi cation as well. For testing this procedure, a graphic display 
method was scripted that illustrates the classifi cation results 
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 Figure 3    Individual classifi cation results for all 49 subjects calculated with mode 7. The total correct response rate for all task conditions is 
displayed after averaging the results of all task conditions. Again, in random data sets, 14.3 %  would be the chance expectation.    
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over time using mode 7. Such a graph can be regarded as 
a kind of a staging diagram of states of consciousness, 
similarly to the staging of sleep stages. Although the seven 
standard tasks cannot be ordered linearly into states of med-
itation depth, it seems to make sense to order them in terms 
of their  “ exceptionality ”  of a state of consciousness due to 
the task condition. Therefore, the most common and non-
meditative state was associated with the reading condition 
and was displayed at the top row. Below that, the resting 
states with eyes open and then with eyes closed were listed. 

All states below the second row thus were eyes-closed states. 
The eyes-closed condition was followed by the meditative 
presence, then the concentrative condition on the third eye 
and on the energy of the body axis. The deepest state dis-
played at the bottom line was the state of emptiness. For 
each point in time, the classifi cation result was marked with 
a dot in the corresponding row. The results are staging dia-
grams as shown in Figure  6  . As we have shown above, the 
states could be correctly recognized to an extent of about 
70 – 90 % ; thus, it can be assumed that the staging as shown 
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 Figure 4    The mean classifi cation accuracy of mode 7 is depicted for each task separately. Forty-nine meditators of various experiences were 
averaged. The error bars are the standard deviations between meditators. Again, 14.3 %  would be the chance expectation in random data sets.    
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 Figure 5    Individual amount of classifi cation results within the meditation session for all 49 subjects. The gray circles and ovals mark those 
meditators who had their eyes open or half open during the meditation session.    
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 Figure 6    Exemplary staging diagrams of states of consciousness are shown during a free and unguided meditation session without predefi ned 
tasks of two different meditators in (A) and (B). For classifi cation of this staging example, EEG data and peripheral measures were included 
according to mode 7.    

in the fi gure is highly reliable as well. While the meditator 
in a) remained in a state of presence during the fi rst and 
last third, and the middle part was most similar to the eyes-
closed condition, the meditator in b) often stayed in a state 
most similar to the concentration on the third eye.   

  Discussion 

 In the section  “ Results of classifi cation, ”  we show that, in 
general, samples from the EEG and physiological measures 
recorded during different meditative and non-meditative 
tasks could be reassociated to their task condition with 
83 %  accuracy. This goal was achieved by focusing on three 
problems: 1) data preprocessing and selection of variables, 
2) reduction of dimensionality, and 3) data classifi cation. 
The latter was performed using a standard linear multiclass 
discriminant analysis. The reduction of dimensionality was 
necessary to avoid problems of overfi tting, i.e., the number 
of training data sets should be much larger than the num-
ber of data dimensionality. The PCA can be regarded as a 
common method for reduction of data dimensionality on the 
basis of the variance. The preprocessing of EEG data fol-
lowed a standard approach as well applying artifact reduc-
tion and fi ltering into spectral bands using Fourier transform. 
The non-straightforward part in this approach was the choice 
of EEG and other physiological data to be included into the 
classifi cation process. Through a lengthy statistical analysis 
procedure, we have identifi ed a set of parameters leading to 
useful classifi cation results. 

 As we have used all our participants for this, one might 
ask how well those fi ndings generalize to another group of 

people carrying out the same tasks. Looking on the relatively 
small variance of classifi cation accuracy between subjects, 
we could have also found this selection with only a subset of 
participants. In other words, it is likely to achieve a similar 
performance using the same method on other participants in 
the future (meditators or non-meditators) using the same vari-
able selection. 

 Despite gaining high classifi cation accuracies, this study 
suffers from one potential problem  –  the temporal structure 
of the experiment in which each task only was performed 
once for a longer period. A more robust design against pos-
sible sequence effects would have been the repetition of 
all seven task conditions for several times in a randomized 
order. However, this may have induced other problems to 
the meditative tasks because, sometimes, meditators require 
a certain time to tune into a meditation task.  

  Conclusion 

 Assuming the reassociation of temporal recording windows 
to specifi c tasks with about 70 – 90 %  accuracy, as shown in the 
section  “ Results of classifi cation, ”  is a reliable approach, we 
could also assume that the association of a free meditation task 
to other meditative tasks as done in the section  “ Continuous 
data stream classifi cation ”  is a reliable procedure as well. 
One might question whether the seven remaining tasks were 
a good choice for the so-called staging references, and we 
could imagine more appropriate tasks or states of conscious-
ness, but with those data we could for the fi rst time present an 
approach for realizing a quite reliable staging paradigm for 
altered states of consciousness. 
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 This encouraged us to implement all signal processing 
and classifi cation algorithms used here in the brain-computer 
interface Thought Translation Device, which we have to our 
disposal  [5, 13, 25] , that would allow for real-time staging. 
Here, real-time classifi cation using a support vector machine 
would be available as well  [14, 26] . In the future, such real-
time brain-state staging could not only assist a meditator dur-
ing a meditation session by receiving appropriate feedback 
but will also help researchers to learn online about states and 
their subjectively experienced correlates.   
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  Appendix 

 In the following, the essential part of the classifi cation routine 
is drafted. The code was written in Matlab. 

    %  Defi nitions   
 el = 64;   % 64 electrodes  
  bandSelection = [3,4,5,6,7];   %  selection of 5 spectral EEG 
bands  
 bands = 5; 
 bandLatSelection = [5,6,7];   %  selection of 3 spectral later-
alized EEG bands  
 testPercent = 20;   %  choose 20 %  of data samples for testing 
the classifi er and 80 %  for training the classifi er  
 numXValidation = 20;   %  number of cross validation cycles  
 numCoeff = 3;   %  number of PCA coeffi cients in fi rst PCA  
 numCoeff2 = 21;   %  number of coeffi cients in second PCA  
     %  do cross validation and classifi cation with all 
participants   
  for  vpi = 1:vpn   %  go through all vpn = 49 subjects  

  [movStd, periStd, latStd, indexStd] =  ConcatStdCon-
dBands (Preprocess_data(vpi), bandSelection, band-
LatSelection); 
    %  this function creates the data sets used for later clas-
sifi cation, all tasks are concatenated to one array  
    %  index(samps) is task index (1...7) of each sample, 
samps is total number of samples (2 per second)  
    %  the spectral EEG data set is movStd(samps, 5bands, 
64 electrodes),  

   %  the peripheral data are periStd(samps,4),  
    %  the lateralized EEG data are latStd(samps,3 bands,4 
areas),  
  for  xi = 1:numXValidation   %  20 fold cross validation  

    %  separate the data sets randomly into training data 
and classifi cation test data  
  [movStd_train, periStd_train, latStd_train, index-
Std_train, movStd_test, periStd_test, latStd_test, 
indexStd_test] =  SelectXValidation (movStd, periStd, 
latStd, indexStd, testPercent); 
    % movStd_train(trainsamps,5bands, 64 electrodes)... 
trainsamps contains 80 %  of samps  
  [mov_pca_train, mov_pca_test] =  PCA (movStd_train, 
movStd_test, numCoeff);   %  fi rst PCA only on 64 
electrodes EEG data  
    %  mov_pca_train(trainsamps, 5 bands × 3 
coeffi cients)  
    %  append lateralized data and peripheral data 
and create a data matrix mov_pca_train(train-
samps,5×3 + 3×4 + 4)  
  ...  
    %  reduce coeffi cients with a second PCA  
  [mov_pca2_train, mov_pca2_test] =  PCA (mov_pca_
train, mov_pca_test, numCoeff2); 
    %  resulting in mov_pca2_train(trainsamps,21), 
mov_pca2_test(testsamps,21)  
  class =  classify (mov_pca2_test, mov_pca2_train, index-
Std_train); %  classifi cation 
   %  calculation of correct response rate  
  correct_tot =   sum  ((class =   =  indexStd_test),1)./
size(class,1); 

  end  
   %  average correct response rate over numXValidation  
  ...  

  end    
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